
Copyright ECOTRONS LLC
All Rights Reserved

EAS2A01 Datasheet

 Cal. capability: 9.2K DMIPS + 1800 GMAC

 Data transmission interfaces:

o 1 Gigabit Ethernet interface

o 1 HDMI output interface

o 8 GMSL interfaces

o 2 CAN interfaces

o 2 RS-232 interfaces

 Operating voltage: DC 9-16V

 Operation memory: 2GB

 Storage memory: 16GB

 Operating temperature: -40 to 85 °C

 Humidity: 0 - 95%, no condensation

 Storage temperature: -40 to 85 °C

 Dimensions: 284×143×42mm

 Weight: less than 1500g

Copyright ECOTRONS LLC
All Rights Reserved

Revision History

Time Version Detail Reviser

Apr. 29, 2019 V1.0 First version David Wang

Sep. 20, 2019 V1.1 3.3.3 updated David Wang

Feb. 11, 2020 V1.2 EcoCoder-AV, address updated David Wang

Feb. 20, 2020 V1.3 EcoCoder-AI update David Wang

May 11, 2020 V1.4 Contact info update Zack Li

Contact us

Web: http://www.ecotrons.com

Email: info@ecotrons.com

ev-support@ecotrons.com

Address: 13115 Barton Rd, Ste H

 Whittier, CA 90605 USA

Telephone: +1 562-758-3039

 +1 562-713-1105

http://www.ecotrons.com/
mailto:info@ecotrons.com
mailto:ev-support@ecotrons.com

Copyright ECOTRONS LLC
All Rights Reserved

Content

Chapter 1 Summery .. 5

Chapter 2 Mechanics .. 6

2.1 Dimensions .. 6

2.2 Connector .. 6

Chapter 3 Quick Start .. 8

3.1 Preparation ... 8

3.2 Basic Knowledge ... 8

3.3 Using the device .. 8

3.3.1 Connect all the components ... 8

3.3.2 Configure ... 8

3.3.3 Boot ... 8

3.3.4 Test .. 9

3.3.5 Develop ... 11

Chapter 4 Hardware .. 12

4.1 Specifications .. 12

4.2 Device Ports .. 13

4.3 System Main Chip ... 14

4.4 Circuit Structure .. 17

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 5 Software ... 19

5.1 U-Boot ... 19

5.2 Linux Kernel ... 20

5.3 Root File System .. 20

5.4 ROS .. 21

5.5 EcoCyber ... 22

Chapter 6 Interface ... 24

6.1 RS232 .. 25

6.2 CAN.. 26

6.3 Ethernet .. 27

6.4 HDMI ... 30

6.5 GMSL ... 31

Chapter 7 Demo Application ... 33

Chapter 8 Development Tool .. 34

8.1 S32 Design Studio for Vision IDE ... 34

8.2 VSDK .. 34

8.3 EcoSDK-S2 ... 35

8.4 EcoCoder-AI... 35

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 1 Summery

EAS2A01 is a central computing platform developed by Ecotrons LLC for autopilot systems with

car-level chips. The main computing chip of EAS2A01 is NXP's S32V234 which is designed

specifically for the data processing of the autonomous system. S32V234 contains a parallel

computing module that enables hardware-level data operation acceleration. The software

system of EAS2A01 is also customized for autonomous driving. It contains a real-time optimized

Linux kernel, a high-performance runtime framework ROS, EcoCyber and so on. Moreover, we

provide development tools on PC, enabling developers to safely, conveniently and efficiently

build an automatic driving system that meets the L3 level autonomous driving system.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 2 Mechanics

2.1 Dimensions

The size of housing is 284 × 143 × 42 mm (connectors excluded). The color is silver, and the

material is aluminum.

2.2 Connector

EAS2A01 uses the 32-pin water-proof car-level connector from Tyco shown as below. The

interface of the camera is FAKRA.

Copyright ECOTRONS LLC
All Rights Reserved

No. Name Type Supplier

1 PCB needle 64334-0100 TE

2 32P sheath 64319-3211 TE

4 Terminal 64323-1029 TE

5 Terminal 64323-1039 TE

6 32P back 64319-1201 TE

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 3 Quick Start

3.1 Preparation

Before using this device, please prepare the following items:

 Stable power supply, 12V DC / 2 A minimum

 USB to RS-232 adapter

 Network cable with RJ-45 connector

 Wireless router

 Computer with ubuntu 14.04 and minicom installed

3.2 Basic Knowledge

If you are a Linux beginner, it's helpful to learn some quick tutorials about Linux command line

tools. Please click this: http://www.ee.surrey.ac.uk/Teaching/Unix/

3.3 Using the device

3.3.1 Connect all the components

Connect the positive and negative terminals of the device to DC power supply, and connect the

RS232-1 of the device to the computer through USB to RS-232 adapter, ensuring that the

computer can use the serial device normally. Connect the device to the router through the

network cable, and connect the computer to the router via WIFI, so that the computer and the

device are in the same local area network.

3.3.2 Configure

Serial Port Configuration: baud rate = 115200, data bits = 8, parity bit = no, stop bit = 1.

Router Configuration: DHCP service = enabled.

3.3.3 Boot

Turn on the device's KeyOn switch and start the device power. The device shall start U-Boot and

then run the Linux system. If you see the following information in the serial terminal window,

http://www.ee.surrey.ac.uk/Teaching/Unix/

Copyright ECOTRONS LLC
All Rights Reserved

the system starts normally. The username is “root” and there is no password. To learn more

about the software information of the system, please read the software description of this

document.

3.3.4 Test

Go to /home/root/testfile, you can see the test instructions and test programs for various

interfaces in the directory.

cd /home/root/testfile

Test HDMI interface

Connect the display to the HDMI interface of the device through HDMI cable. In the serial

terminal, go to hdmi_test directory and go through hdmi_test.txt. Work as the file says, you will

see the image information on the display.

cd /home/root/testfile/hdmi_test/

cat hdmi_test.txt

Test FAKRA interface

To test FAKRA interface, you need to prepare a camera which is compatible with the software.

If you need help with camera selection, please contact us. Here we are going to take camera

Copyright ECOTRONS LLC
All Rights Reserved

module MAXCAMOV10640 as an example. The sensor of the camera module is OV10640, and

the serializer is MAX96705. Connect the camera module to FAKRA interface, in the serial

terminal, go to directory cam_test, and execute isp_ov10640_quad_slotX.elf (X in

isp_ov10640_quad_slotX.elf stands for the No. of FAKRA interface), and you can see the image

information on the display. If you don’t see any image in the display, you can try pressing ‘X’,

and then keep pressing ‘+’ or ‘-’.

cd /home/root/testfile/cam_test/

./isp_ov10640_quad_slot3.elf

Test CAN interface

Connect CANA and CANB of the device to the same CAN bus through a CAN cable, in the serial

terminal, go to can_test directory, view at can_test.txt and work as the instruction says. If CANB

can receive the data frame sent by CANA, CANA can also receive the data frame sent by CANB,

both CAN channels can work normally.

cd /home/root/testfile/can_test/

cat can_test.txt

Test network interface

Type ifconfig in the serial terminal and remember the IP address of the device. Type ifconfig in

the computer terminal and remember the IP address of the computer. After you confirm they

are in the same local area network, you can use ping command to test the connection state of

the internet. For example, if the computer’s IP is 192.168.1.112, the command should look like

this:

ifconfig

ping 192.168.1.112

Test serial port

Copyright ECOTRONS LLC
All Rights Reserved

If the serial terminal can interact with the device, the RS232-1 hardware is in good state and we

only need to test RS232-2. Disconnect the USB to RS232 adapter from RS232-1 of the device,

instead, connect with RS232-2 interface of the device. After confirming that there is no problem

with the network connection between the device and the computer, you can enter the telnet

command in the computer terminal and replace <> to log in to the device through the network.

Go to the uart_test directory and check the uart_test.txt file. Follow the instructions, you can

the test PC sending to the device and the device sending to PC.

$ telnet <target_ip>

cd /home/root/testfile/uart_test/

cat uart_test.txt

Test ROS

Work in the serial terminal: go to ros_test directory and view ros_test.txt file. Work as the

instruction says, you will be able to see that the most basic publisher talker and subscriber

listener in the ROS system can communicate normally.

cd /home/root/testfile/ros_test/

cat ros_test.txt

3.3.5 Develop

Develop the application based on the device using the development tool provided in this

document, and transfer the compiled executable program to the device through the SCP

command. Then you can start the application.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 4 Hardware

The hardware circuit of the device is designed according to the application requirements of the

automatic driving system. The electrical parameters meet the requirements of the vehicle

standard. It has various data transmission interfaces, which makes it easy to do multi-sensor

fusion of the automatic driving system. The main chip contains a variety of high-performance

computing units to adapt to the calculation characteristics of automatic driving sequence

calculation and parallel computing.

 Operating voltage: DC 9-16V

 Operation memory: 2GB

 Storage memory: 16GB

 Calculation capability: 9.2K DMIPS + 1800 GMAC

 Data transmission interfaces:

o 1 Gigabit Ethernet interface

o 1 HDMI output interface

o 8 GMSL interfaces

o 2 CAN interfaces

o 2 RS-232 interfaces

4.1 Specifications

Item Detail

Operating voltage DC 9-16V

SDRAM 2GB

eMMC 16GB

Operating temperature -40 to 85 °C

Operating humidity 0 – 95%, no condensation

Storage temperature -40 to 85 °C

Dimensions 284×143×42mm

Weight ≤1500g

Copyright ECOTRONS LLC
All Rights Reserved

4.2 Device Ports

The naming rules for the device ports are shown below:

You can look up the port definition in the table below.

Port/Pin Function Usage example

RJ45 Gigabit Ethernet LiDAR

HDMI High-Definition Multimedia Interface Output

FAKRA1 Gigabit Multimedia Serial Link (GMSL) Input 1 Camera

FAKRA2 Gigabit Multimedia Serial Link (GMSL) Input 2 Camera

FAKRA3 Gigabit Multimedia Serial Link (GMSL) Input 3 Camera

FAKRA4 Gigabit Multimedia Serial Link (GMSL) Input 4 Camera

FAKRA5 Gigabit Multimedia Serial Link (GMSL) Input 5 Camera

FAKRA6 Gigabit Multimedia Serial Link (GMSL) Input 6 Camera

FAKRA7 Gigabit Multimedia Serial Link (GMSL) Input 7 Camera

FAKRA8 Gigabit Multimedia Serial Link (GMSL) Input 8 Camera

32P-H1 Power Positive DC 9-16V

32P-H2 Power Positive DC 9-16V

32P-H3 Power Positive DC 9-16V

Copyright ECOTRONS LLC
All Rights Reserved

Notes:

The output voltage of the FAKRA interface is hardware configurable. There are two voltage

levels to choose from: DC 5V and power supply voltage. Please refer to the EAS2A01 Product

Test Report for specific output voltage or contact the equipment supplier.

Default terminal resistance of CAN interface is 120Ω.

4.3 System Main Chip

32P-H4 Power Positive DC 9-16V

32P-G1 Power GND

32P-G2 Power GND

32P-G3 Power GND

32P-G4 Power GND

32P-F2 KeyOn Switch 1

32P-E2 KeyOn Switch 2

32P-C4 CANA H Millimeter wave

radar 32P-D4 CANA L

32P-A4 CANB H Vehicle CAN

32P-B4 CANB L

32P-A3 CANA Shield Ground

32P-A2 CANB Shield Ground

32P-B3 RS232-1 Receiver Debug

32P-C3 RS232-1 Transmitter

32P-C2 RS232-2 Receiver IMU

32P-D2 RS232-2 Transmitter

32P-C3 Signal GND

32P-D3 Signal GND

32P-E3 Signal GND

32P-E4 Signal GND

32P-F3 Signal GND

32P-F4 Signal GND

Copyright ECOTRONS LLC
All Rights Reserved

The main chip of EAS2A01 is NXP S32V234, which is NXP's second-generation vision processor

designed to support computationally intensive applications such as image processing. It is

designed for automotive-grade reliability, functional safety and safety measures. It supports ISO

26262 functional safety, and is suitable for ASIL-C, IEC 61508 and DO 178 applications. It can be

used for ADAS, NCAP front-view cameras, foreign object detection and recognition, surround

vision, machine learning and sensor fusion applications. The processor's computing unit

consists of a quad-core Arm® Cortex®-A53 application processor, a single-core ARM Cortex-M4

real-time processing unit, a dual-core APEX-2 vision accelerator, an image processing unit ISP

and a 3D GPU. Applied to autonomous driving, its specific calculation tasks can be assigned as

follows:

 ARM A53: task scheduling, hardware management

 APEX: parallel computing, such as image recognition, neural networks, etc.

 ISP: image processing, color conversion, tone mapping, etc.

 GPU: display functions, such as image rendering or overlay generation

The APEX core is a programmable, high-performance, energy-efficient vision accelerator core. It

is a massively parallel hybrid processor that is ideal for processing large amounts of data. Each

APEX core contains two array processor units (APUs), an advanced direct memory access (DMA)

engine and other hardware blocks. The APU is a scalar vector hybrid processor with 32 16-bit

Copyright ECOTRONS LLC
All Rights Reserved

computing units (CUs), whose local dedicated computation memory (CMEM) is for vectors and

tightly coupled to the 32-bit scalar RISC processor. Please refer to S32V234 Manual for more

information.

The APEX core provides flexible configuration at runtime. By default, APEX is configured as a

single APU with 64-CU. When using the APEX Core Framework library, you can change the

configuration at runtime and have two separate APUs, each with 32 CUs. For information on

how to use APEX to program, please download Vision SDK Software and refer to the

documentation, or you can use the S32 Design Studio for Vision IDE.

We compare the computational efficiency of Arm® Cortex®-A53 and APEX with the demo

apex_add.elf in the VSDK package provided by NXP. The Vision Software Development Kit

(VSDK) provides a comprehensive development environment for the S32V234 vision processor

family. The VSDK can be used to develop applications for the Arm® Cortex®-A53. With the

graphical tools in the S32 Design Studio for Vision IDE, you can also develop computationally

intensive image processing application based on Image Signal Processing (ISP) and Parallel

Computing (APEX). At the same time, NXP provides the APEXCV library, which uses APEX to

implement basic operations in OpenCV, which is convenient for application developers to port

https://www.nxp.com/webapp/Download?colCode=S32V234RM
https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=SW32V23-VSDK001E
https://www.nxp.com/cn/support/developer-resources/run-time-software/s32-design-studio-ide/s32-design-studio-for-vision-processors:S32DS-VISION

Copyright ECOTRONS LLC
All Rights Reserved

applications based on CPU version OpenCV to APEX for operation acceleration. APEX supports

application developers flexible programming experience based on APEX.

Test project: Perform matrix addition of 2048x1024

Test process: matrix addition operation is performed on ARM, single APEX acceleration unit,

and two APEX acceleration units respectively, and the time spent by different operation units is

measured at the same time, and broadcasted through the console.

Test result:

Round ARM

(Unit: ms)

APEX Single

(Unit: ms)

Acceleration

Factor

APEX Dual

(Unit: ms)

Acceleration

Factor

1 65.924599 2.192400 30.069604 1.673000 39.405020

2 65.961395 2.069500 31.873107 1.608200 41.015667

3 65.849403 2.066400 31.866726 1.607300 40.968956

4 65.765999 2.072700 31.729628 1.602900 41.029384

5 66.085007 2.073000 31.878923 1.610700 41.028750

Average 65.917281 2.094800 31.483597 1.620420 40.689555

Test conclusion:

A single APEX acceleration unit can accelerate about 30 times.

Two APEX acceleration units can accelerate about 40 times.

4.4 Circuit Structure

The internal circuit structure is shown below:

Copyright ECOTRONS LLC
All Rights Reserved

S32V234
SOC

DDR3L
2GB

HDMI

eMMC
16GB

Thermal
Sensor

Cameras GMSL

Power
Supply

CAN1

CAN0

RS232

RS232

RS232
PHY

CAN
PHY

Gbit
Ethernet

ENET
PHY

System
Control

HDMI
PHY

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 5 Software

The software system of EAS2A01 is customized for the autonomous driving system. The

following figure is a typical block diagram of the autonomous driving system. The software

system of EAS2A01 consists of RTOS, Runtime Framework and so on. The RTOS is a real-time

optimized Linux operating system. The Runtime Framework has two software frameworks to

choose from: one is the Indigo version of ROS (Robot Operating System), and the other is

EcoCyber based on Apollo Cyber RT developed by Ecotrons.

We will introduce U-Boot, Linux kernel, root file system (RFS), ROS and EcoCyber to you. Among

them, U-Boot, Linux kernel, and root file system (RFS) constitute the Linux operating system, as

shown in the following figure.

5.1 U-Boot

Copyright ECOTRONS LLC
All Rights Reserved

U-Boot is a general-purpose bootloader widely used in the embedded field. U-Boot can work in

boot load mode and download mode. The boot load mode is the normal working mode of the

bootloader. In this mode, the bootloader automatically loads the operating system image from

the FLASH into the RAM and boots it to start running. The download mode is that the

bootloader downloads the kernel image and the root file system image from the PC to the

FLASH of the target board through some communication means. Users can use the command

interface provided by the Bootloader to complete the operation they want. For details, please

refer to the Wiki area for cooperating on U-Boot development.

5.2 Linux Kernel

The Linux kernel is an open source computer operating system kernel. It is a Unix-like operating

system written in C language and conforms to the POSIX standard. It mainly implements

process management, memory management, device management, virtual file system, etc., to

achieve isolation between kernel space and user space, as shown in the following figure. Please

refer to https://www.kernel.org/ for details.

5.3 Root File System

The root file system is the first file system mounted when the kernel is booted. The operating

system loads some of the basic initialization scripts or services and other executable programs

into memory after the root file system is mounted. The Linux root file system of this device

conforms to the specifications of the Linux system. Generally, there are directories: dev, proc,

http://www.denx.de/wiki/U-Boot
https://www.kernel.org/

Copyright ECOTRONS LLC
All Rights Reserved

sbin, bin, usr, tmp, lib, home, etc., as shown below. For the standard directory structure of

Linux file system, please refer to Filesystem Hierarchy Standard.

By default, the file system contains some basic software libraries, including: NXP-VSDK, boost,

libc, Python2.7, Python3.5, OpenCV, PCL, Perl and so on. Application developers can develop

applications based on these software libraries and add software libraries as needed. For details,

refer to the EcoSDK-S2 Instruction Manual.

5.4 ROS

ROS (Robot Operating System) is a robot software platform that provides operating system-like

functions for heterogeneous computer clusters. The predecessor of ROS was the Switchyard

project established by the Stanford Artificial Intelligence Laboratory to support the Stanford

Intelligent Robot STAIR. By 2008, the development of the project was continued mainly by

Willow Garage. ROS provides some standard operating system services such as hardware

abstraction, underlying device control, common function implementation, interprocess

messages and packet management. ROS is based on a graph-like architecture whereby

processes at different nodes can accept, publish and aggregate various information (such as

sensing, control, state, planning, etc.). ROS can be divided into two layers, the lower layer is the

operating system layer described above, and the upper layer is the various software packages

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

Copyright ECOTRONS LLC
All Rights Reserved

that the different user groups contribute to realize different functions, such as positioning

drawing, action planning, sensing, simulation and so on. For details, please refer to the ROS

website.

5.5 EcoCyber

EcoCyber is a high-performance runtime framework developed by Ecotrons LLC based on Apollo

Cyber RT, designed for autonomous driving scenarios. Based on a centralized computing model,

it is optimized for high concurrency, low latency and high throughput in autonomous driving to

meet the requirements of autonomous driving solutions. EcoCyber is built on the concept of

components. The result of component development is the base library and common

components. The principle is high reuse and low coupling, resulting in the refined components

for different functions. The specific functions depend on the extracted components, and the

components themselves may have dependencies, but generally not much. Each component is a

building block of the EcoCyber framework that includes a specific algorithm module that

processes a set of input numbers and produces a set of output numbers.

EcoCyber’s structure is shown above. The bottom layer is the basic library, and above it are

communication-related modules, including service discovery and the Publish-Subscribe System.

EcoCyber supports cross-process and cross-machine communication. The upper layer does not

need to care about the implementation details, because the communication layer will

http://www.ros.org/
http://www.ros.org/

Copyright ECOTRONS LLC
All Rights Reserved

automatically select the corresponding communication mechanism according to the

deployment of the algorithm module. Above the communication layer is the data cache/fusion

layer. Data needs to be fused between multiple sensors, and the algorithm needs to cache

certain data. For example, typical simulation applications require a data bridge between

different algorithm modules, and the data layer acts as a bridge for communication between

the modules. Further up is the computating model, which includes scheduling and tasks. Above

the computing model is the interface provided to the developer. EcoCyber provides a

Component Class for developers, which the developer only needs to inherit and implement the

Proc interface. At the same time, EcoCyber is also based on coroutines, providing developers

with parallel computing-related interfaces. There are also tools for development and

debugging, recording and playback, and other performance debugging tools. For instructions on

how to create a new component using Cyber RT, please refer to How to Create a New

Component Using Cyber RT.

https://github.com/ApolloAuto/apollo/blob/master/docs/cyber/CyberRT_Quick_Start_cn.md
https://github.com/ApolloAuto/apollo/blob/master/docs/cyber/CyberRT_Quick_Start_cn.md

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 6 Interface

In a Linux system, all devices are divided into three categories: character devices, block devices,

and network interfaces.

A character device refers to a device that can read and write only one byte after another, or in

order. Character devices are stream-oriented devices, so it cannot read data in the device

memory randomly. Common character devices are mouse, keyboard, serial port, console, and

LED devices. The console (/dev/console) and the serial port (/dev/ttyS0) are examples of

character. Character devices are accessed through file system nodes, such as /dev/tty1 and

/dev/lp0. The only relevant difference between a character device and a regular file is that you

can often move around in a normal file, but most character devices are just data channels, and

you can only access them sequentially. However, there are character devices that look like data

areas, which you can move around. For example, frame grabber is often the case, where

applications can use mmap or lseek to access the entire requested image.

A block device is a device that can read a certain length of data from any location of the device.

Block devices include hard disks, USB flash drives and SD cards. Block devices are accessed

through file system nodes located in the /dev directory. A block device (such as a disk) should

be able to host a file system. Linux allows an application to read and write a block device like a

character device, which allows any number of bytes to be transferred at a time. As a result, the

difference between block and character devices is only in the kernel and in the way that data is

managed internally, and therefore differs in the software interface of the kernel/driver. Like a

character device, each block device is accessed through a file system node, and the difference

between them is transparent to the user. The block driver is completely different in terms of

the kernel driver from the character driver.

A network interface is a device that can exchange data with other hosts. Usually, an interface is

a hardware device, but it can also be a pure software device, such as a loopback interface. A

network interface is responsible for sending and receiving data messages. Under the driver of

the kernel network subsystem, it is not necessary to know how a single transaction is mapped

to the actual transmitted message. Many network connections (especially those using TCP) are

Copyright ECOTRONS LLC
All Rights Reserved

stream-oriented, but network devices are often designed to handle the sending and receiving

of messages. A network driver knows nothing about a single connection; it only processes

messages. Since it is not a stream-oriented device, a network interface is not as easy to map to

a node of the file system as /dev/tty1. The way Unix provides access to interfaces is still by

assigning a name to them, e.g. eth0, but the name does not have a corresponding entry in the

file system. The communication between the kernel and the network device driver is

completely different from that used for character and block device drivers. Instead of using

read and write command, the kernel calls the socket function associated with the message

passing.

For EAS2A01, different interfaces correspond to different types of devices in a Linux system.

Among them, RS232 and HDMI belong to the character type device, Ethernet interface and CAN

belong to the network interface, and the camera corresponding to the GMSL interface is not a

standard device of the Linux system. For these devices, you can use the programming language

C to write programs that call the driver access functions of these devices to access the

interface. For details, please refer to the "EcoSDK-S2 Instruction Manual". We will explain in

detail how to configure interface parameters through the console to access the interface in this

chapter.

6.1 RS232

RS232, an asynchronous transmission standard interface developed by the Electronic Industries

Association (EIA), is one of the communication interfaces on personal computers. To learn more

about the RS232 interface, you can refer to RS232-Wikipedia. The RS232 interface is mapped to

character device files in the Linux operating system, and RS232-1 and RS232-2 correspond to

/dev/ttyLF0 and dev/ttyLF1, respectively.

To view the parameters of RS232, use this command:

stty -F /dev/ttyLF1 -a

To set the baud rate of RS232-2 as 115200 and 8 data bits, use command below. If it can’t

display properly, you may type in sty --help to see other configuration setup.

https://en.wikipedia.org/wiki/RS-232

Copyright ECOTRONS LLC
All Rights Reserved

stty -F /dev/ttyLF1 ispeed 115200 ospeed 115200 cs8

To print the data from RS232, use this command:

cat /dev/ttyLF1

To send data by RS232, you can use this command:

echo “hello world” > dev/ttyLF1

6.2 CAN

CAN is the abbreviation of Controller Area Network (CAN). It was developed by German BOSCH

company, which is famous for developing and producing automotive electronics products, and

eventually became an international standard (ISO 11898). It is one of the most widely used

fieldbuses in the world. In North America and Western Europe, the CAN bus protocol has

become the standard bus for automotive computer control systems and embedded industrial

control LANs. To learn more about the CAN bus, you can refer to CANbus-Wikipedia. The basic

software in the EAS2A01 device maps the CAN interface of the device to the SocketCAN in the

operating system, which is managed as a network device by the system.

To view CAN device, you can use the command as below, whereas eth0 is ethernet interface,

can0 and can1 are CANA and CANB respectively.

ifconfig –a

https://en.wikipedia.org/wiki/CAN_bus

Copyright ECOTRONS LLC
All Rights Reserved

You can use the command below to configure the CAN baud rate as 500Kbps:

ip link set can0 type can bitrate 500000

To view parameters of CAN, you can use this command:

ip -details link show can0

To enable CANA, use this command:

ifconfig can0 up

To disenable CANA, type in command like this:

ifconfig can0 down

You can send a CAN frame with ID as 0x5A0 and data as 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,

0x77, 0x88, use this command:

 # cansend can0 -i 0x5a0 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

To receive data from CAN, use the command below:

candump can0

6.3 Ethernet

Copyright ECOTRONS LLC
All Rights Reserved

Ethernet is the most widely used LAN communication method and a protocol. The Ethernet

protocol defines a set of software and hardware standards that connect different computer

devices together. The basic elements of Ethernet (Ethernet) device networking are switches,

routers, hubs, fiber and common network cables, and Ethernet protocols and communication

rules. The port for network data connection in Ethernet is the Ethernet interface. To learn more

about Ethernet, you can refer to the Ethernet-Wikipedia. The basic software in the EAS2A01

device maps the Ethernet interface of the device to eth0 in the operating system.

To view Ethernet interface, you can use the command below, whereas eth0 is Ethernet

interface, and can0 and can1 are CANA and CANB respectively.

ifconfig –a

You can set the IP address to be obtained automatically. Use the vi editor to open the network

port configuration file and edit the file as shown below, and then restart the network port

device. If you need help with how to use vi editor, please refer to A Beginner’s Guide to Vim.

vi /etc/network/interfaces

https://en.wikipedia.org/wiki/Ethernet
https://www.linux.com/learn/vim-101-beginners-guide-vim

Copyright ECOTRONS LLC
All Rights Reserved

/etc/init.d/networking restart

You can set the IP address fixed. Use Vi editor to open the Ethernet configuration and edit the

file as follows, then restart the Ethernet device.

vi /etc/network/interfaces

/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet dhcp

dhclient_opts -n

auto can0

iface can0 inet manual

 pre-up /sbin/ip link set $IFACE type can bitrate 500000

 up /sbin/ifconfig $IFACE up

 down /sbin/ifconfig $IFACE down

auto can1

iface can1 inet manual

 pre-up /sbin/ip link set $IFACE type can bitrate 500000

 up /sbin/ifconfig $IFACE up

 down /sbin/ifconfig $IFACE down

Copyright ECOTRONS LLC
All Rights Reserved

/etc/init.d/networking restart

6.4 HDMI

High Definition Multimedia Interface is an all-digital video and audio transmission interface that

provides uncompressed audio and video signals. HDMI can be used in set-top boxes, DVD

players, personal computers, video game consoles, integrated amplifiers, digital audio and

televisions. HDMI can transmit audio and video signals. Since the audio and video signals use

the same cable, the installation of the system wiring is greatly simplified. To learn more about

HDMI, see HDMI-Wikipedia. In the EAS2A01 device, the HDMI interface is mapped to the frame

buffer device in the Linux operating system, and the video display device is driven in a memory

buffer containing the complete frame data, and the corresponding device file is /dev/fb0. If the

system has multiple graphics cards, multiple frame buffer devices can be supported under

Linux, up to 32.

You can get a blurred screen on the monitor connected to HDMI.

cat /dev/urandom > /dev/fb0

/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

 address 10.0.0.100

 netmask 255.255.255.0

 gateway 10.0.0.1

auto can0

iface can0 inet manual

 pre-up /sbin/ip link set $IFACE type can bitrate 500000

 up /sbin/ifconfig $IFACE up

 down /sbin/ifconfig $IFACE down

auto can1

iface can1 inet manual

 pre-up /sbin/ip link set $IFACE type can bitrate 500000

 up /sbin/ifconfig $IFACE up

 down /sbin/ifconfig $IFACE down

https://en.wikipedia.org/wiki/HDMI

Copyright ECOTRONS LLC
All Rights Reserved

You can get a black screen on the monitor connected to HDMI.

cat /dev/zero > /dev/fb0

6.5 GMSL

The Gigabit Multimedia Serial Link (GMSL) fully supports the broadband, complex

interconnection and data integrity required by future automotive infotainment systems and

advanced driver assistance systems (ADAS). From the ultra-low power requirements of the

camera to the broadband requirements for sensor data aggregation, GMSL SerDes can meet all

the needs of future systems. Advanced link integrity and diagnostics provide reliable link

performance monitoring, which is critical to the design of automotive safety systems. The GMSL

serializer and deserializer support up to 15m of shielded twisted pair (STP) or coaxial cable

transmission to meet the automotive industry's most demanding electromagnetic compatibility

(EMC) requirements. Both the serializer and deserializer ICs have built-in spread spectrum

capability to improve the electromagnetic compatibility (EMC) of the link without the need for

an external spread spectrum clock. Interoperability between the serializer and deserializer

families allows different interfaces to be used on both sides of the link. In addition to driving

high-resolution center/rear display and dashboards, GMSL SerDes is also capable of megapixel

camera system design. Based on the many performances of modern automotive video

interconnects, GMSL technology provides broadband, feature-rich, design flexibility and other

Copyright ECOTRONS LLC
All Rights Reserved

advantages to support future automotive design requirements such as driverless systems.

Different camera models need to be compatible with different driver packages and cannot be

accessed directly through the console.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 7 Demo Application

The figure below is a demonstration of autonomous driving hardware platform, which consists

of EAS2A01 and sensors.

 ACU

VPWR
32P-H2

32P-H3

32P-H4

GND

BATT

KEYON

32P-F2

32P-E2

32P-C4

32P-D4

32P-A3

CANA Vehicle

32P-A4

32P-B4

32P-A2

CANB Radar

32P-H1

32P-G1

32P-G2

32P-G3

32P-G4

FAKRA1
Camera*1

FAKRAn
Camera*n

32P-B3

32P-C3RS232-1 PC

32P-C2

32P-D2RS232-2 IMU

Lidar
RJ45

Ethernet

GMSL

GMSL

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 8 Development Tool

Devices consisting of hardware, operating system stacks, and runtime environments are not

capable of autopilot, and we need to continue to develop software packages that implement

specific functionality, build them, and deploy them to the devices. Therefore, we offer three

development tools that users can use to develop applications for specific scenarios.

8.1 S32 Design Studio for Vision IDE

S32 Design Studio for Vision IDE is an integrated development environment for the S32V234

processor, which is capable of code editing, code compiling and debugging. It is based on open

source software such as the Eclipse IDE, the GNU Compiler Suite (GCC), and the GNU Debugger

(GDB). S32 Design Studio for Vision IDE provides designers with an intuitive development tool

with no code size limitations and visual programming tools, making visual accelerometer

programming easier. NXP's other software packages, along with S32 Design Studio, provide a

comprehensive support environment that can reduce development time. Please refer to the

S32 Design Studio for Vision IDE for details.

8.2 VSDK

The Vision Software Development Kit (VSDK) provides a comprehensive development

environment for the S32V234 vision processor family. The VSDK can be used to develop

applications for the Arm® Cortex®-A53. With the graphical tools in the S32 Design Studio for

Vision IDE, you can also develop computationally intensive image processing application based

https://www.nxp.com/support/developer-resources/run-time-software/s32-design-studio-ide/s32-design-studio-for-vision-processors:S32DS-VISION?lang=en&lang_cd=en&

Copyright ECOTRONS LLC
All Rights Reserved

on Image Signal Processing (ISP) and Parallel Computing (APEX). The VSDK also includes a demo

application that runs on Arm® Cortex®-A53, Image Signal Processing (ISP), Parallel Computing

(APEX) and provides complete source code. Please download and view the Vision SDK Software

for details.

8.3 EcoSDK-S2

EcoSDK-S2 provides users with a complete application development environment, including:

- Cross-development toolchain: consists of a cross-compiler, cross-connector, cross-

debugger, and a set of other tools for application development.

- System root: EcoSDK-S2 contains 2 system roots: one for the development host, which

contains the cross-development toolchain and other tools; the other for the target,

which is the full root file system for the target, contains development kits consisting of

header files and libraries.

- Environment settings: The script provided by the EcoSDK-S2 package allows you to

configure an environment for cross-development on the development host.

- Analysis tools: A variety of user space tools for analyzing your application on your target

system.

The components in EcoSDK-S2 give application developers all the tools necessary to write

applications based on the Linux operating system, ROS, and EcoCyber. For details, please refer

to EcoSDK-S2 Instruction Manual.

8.4 EcoCoder-AI

EcoCoder-AI is a powerful automatic code generation library based on Matlab / Simulink that

links directly to the target controller. EcoCoder-AI integrates code generation, compilation and

one-click generation of executable files. It is possible to directly convert the control model

based on Simulink into an EcoCyber-based executable program for the target controller and

download it to the target controller. For details, please refer to EcoCoder-AI Instruction

Manual.

https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=SW32V23-VSDK001E

