
Copyright ECOTRONS LLC
All Rights Reserved

EAXVA01 Datasheet

 Operating voltage: DC 9-36V

 Calculation capability: 30TOPS

 Data transmission interfaces:

o 1 Gigabit Ethernet interface

o 1 HDMI output interface

o 6 FPDLink III input interface

o 2 CAN interfaces

o 2 RS-232 interfaces

 Main chip: Nvidia Xavier

 Operating Temperature: -25 to 80 °C

 Humidity: 0 - 95%, no condensation

 Storage temperature: -25 to 80 °C

 Dimensions: 285×143×42mm

 Weight: less than 1500g

 Operation memory: 16GB

 Storage memory: 32GB

Copyright ECOTRONS LLC
All Rights Reserved

Revision History

Time Version Detail Reviser

Apr. 29, 2019 V1.0 First version David Wang

Sep. 20, 2019 V1.1 First page updated David Wang

Feb. 11, 2020 V1.2 Logo, address, EcoCoder-AV updated David Wang

Feb. 20, 2020 V1.3 EcoCoder-AI update David Wang

May 11, 2020 V1.4 Contact info update Zack Li

Contact us

Web: http://www.ecotrons.com

Email: info@ecotrons.com

ev-support@ecotrons.com

Address: 13115 Barton Rd, Ste H

 Whittier, CA, 90605 USA

Telephone: +1 562-758-3039

 +1 562-713-1105

http://www.ecotrons.com/
mailto:info@ecotrons.com
mailto:ev-support@ecotrons.com

Copyright ECOTRONS LLC
All Rights Reserved

Contents

Chapter 1 Summery ... 5

Chapter 2 Mechanics ... 6

2.1 Dimensions .. 6

2.2 Connector .. 6

Chapter 3 Quick Start ... 8

3.1 Preparation ... 8

3.2 Basic Knowledge ... 8

3.3 Using the device .. 8

3.3.1 Connect all the components .. 8

3.3.2 Configure .. 8

3.3.3 Boot .. 8

3.3.4 Test ... 8

3.3.5 Develop .. 10

Chapter 4 Hardware .. 11

4.1 Specifications .. 11

4.2 Device Ports .. 12

4.3 System Main Chip ... 13

4.3.1 Volta GPU ... 15

4.3.2 Operation Test ... 15

Copyright ECOTRONS LLC
All Rights Reserved

4.4 Circuit Structure .. 16

Chapter 5 Software .. 18

5.1 Real-Time Operating System .. 18

5.2 ROS .. 19

5.3 EcoCyber ... 19

Chapter 6 Interface .. 22

6.1 RS232 .. 23

6.2 CAN.. 24

6.3 Ethernet .. 25

6.4 FPDLink-III ... 28

Chapter 7 Demo Application ... 29

Chapter 8 Development Tool... 30

8.1 Local Development Tool Kit .. 30

8.2 EcoSDK-XV ... 30

8.3 EcoCoder-AI... 30

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 1 Summery

EAXVA01 is a central computing platform developed by Ecotrons LLC for autopilot systems. The

internal main computing chip is NVIDIA's Xavier. Xavier is designed by NVIDIA for embedded

intelligent systems including automated driving systems. With more than 9 billion transistors,

Xavier can perform 30 trillion operations per second, but with a power of only 30 watts, 20 times

faster than existing TX2 platforms. Xavier has six different processors that enable it to process

dozens of algorithms simultaneously and in real-time for sensor processing, ranging, positioning

and mapping, vision and perception, path planning, and vehicle control. The software system is

also customized for the autopilot system, including a real-time optimized Linux operating system,

high-performance runtime framework ROS, EcoCyber, etc., enabling developers to build

automated driving system that meets the L4 requirements, safely, conveniently and efficiently.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 2 Mechanics

2.1 Dimensions

The size of housing is 285 × 143 × 42 mm (connectors excluded). The color is silver, and the

material is aluminum.

2.2 Connector

EAXVA01 uses the 32-pin water-proof car-level connector from Tyco shown as below. The

interface of the camera is FAKRA.

Copyright ECOTRONS LLC
All Rights Reserved

No. Name Type Supplier

1 PCB needle 64334-0100 TE

2 32P sheath 64319-3211 TE

4 Terminal 64323-1029 TE

5 Terminal 64323-1039 TE

6 32P back 64319-1201 TE

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 3 Quick Start

3.1 Preparation

Before using this device, please prepare the following items:

 Stable power supply, 9-36V DC / 2 A minimum

 USB to RS-232 adapter

 Network cable with RJ-45 connector

 Computer with ubuntu 18.04 and minicom installed

3.2 Basic Knowledge

If you are a Linux beginner, it's helpful to learn some quick tutorials about Linux command line

tools. Please click this: http://www.ee.surrey.ac.uk/Teaching/Unix/

3.3 Using the device

3.3.1 Connect all the components

Connect the positive and negative terminals of the device to DC power supply and connect the

RS232-1 of the device to the computer through USB to RS-232 adapter, ensuring that the

computer can use the serial device normally. Connect the computer through network cable to

the same local area network as the device is in.

3.3.2 Configure

Serial Port Configuration: baud rate = 115200, data bits = 8, parity bit = no, stop bit = 1.

3.3.3 Boot

Turn on the device's KeyOn switch and start the device power, the Linux will start. The username

is ‘nvidia’, and the password is ‘nvidia’. To learn more about the software information of the

system, please read the software description of this document.

3.3.4 Test

http://www.ee.surrey.ac.uk/Teaching/Unix/

Copyright ECOTRONS LLC
All Rights Reserved

Go to /home/root/testfile, you can see the test instructions and test programs for various

interfaces in the directory.

cd /home/root/testfile

Test CAN interface

Connect CANA and CANB of the device to the same CAN bus through a CAN cable, in the serial

terminal, go to can_test directory, view can_test.txt and work as the instruction says. If CANB can

receive the data frame sent by CANA, CANA can also receive the data frame sent by CANB, both

CAN channels can work normally.

cd /home/root/testfile/can_test/

cat can_test.txt

Test network interface

Type ifconfig in the serial terminal and remember the IP address of the device. Type ifconfig in

the computer terminal and remember the IP address of the computer. After you confirm they

are in the same local area network, you can use ping command to test the connection state of

the internet. For example, if the computer’s IP is 192.168.1.112, the command should look like

this:

ifconfig

ping 192.168.1.112

Test serial port

If the serial terminal can interact with the device, the RS232-1 hardware is in good state and we

only need to test RS232-2. Disconnect the USB to RS232 adapter from RS232-1 of the device,

instead, connect with RS232-2 interface of the device. After confirming that there is no problem

with the network connection between the device and the computer, you can enter the telnet

command in the computer terminal and replace <> to log in to the device through the network.

Copyright ECOTRONS LLC
All Rights Reserved

Go to the uart_test directory and check the uart_test.txt file. Follow the instructions, you can the

test PC sending to the device and the device sending to PC.

$ telnet <target_ip>

cd /home/root/testfile/uart_test/

cat uart_test.txt

Test ROS

Work in the serial terminal: go to ros_test directory and view ros_test.txt file. Follow the

instructions, you will be able to see that the most basic publisher talker and subscriber listener

in the ROS system can communicate normally.

cd /home/root/testfile/ros_test/

cat ros_test.txt

3.3.5 Develop

Develop the application based on the device using the development tool provided in this

document and transfer the compiled executable program to the device through the SCP

command. Then you can start the application.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 4 Hardware

The hardware circuit of the device is designed according to the application requirements of the

automatic driving system. The electrical parameters meet the requirements of the vehicle

standard. It has various data transmission interfaces, which makes it easy to do multi-sensor

fusion of the automatic driving system. The main chip contains a variety of high-performance

computing units to adapt to the calculation characteristics of automatic driving sequence

calculation and parallel computing.

 Operating voltage: DC 9-36V

 Operation memory: 16GB

 Storage memory: 32GB

 Calculation capability: 30TOPS

 Data transmission interfaces:

o 1 Gigabit Ethernet interface

o 1 HDMI output interface

o 6 FPDLink III input interface

o 2 CAN interfaces

o 2 RS-232 interfaces

4.1 Specifications

Item Detail

Operating voltage DC 9-36V

Operation memory 16GB

Storage memory 32GB

Operating temperature -25 to 80 °C

Operating humidity 0 - 95%, no condensation

Storage temperature -25 to 80 °C

Dimensions 285×143×42mm

Weight ≤1500g

Copyright ECOTRONS LLC
All Rights Reserved

4.2 Device Ports

The naming rules for the device ports are shown below:

You can look up the port definition in the table below.

Port/Pin Function Usage example

RJ45 Gigabit Ethernet LiDAR

FAKRA1 FPD-Link III Input 1 Camera

FAKRA2 FPD-Link III Input 2 Camera

FAKRA3 FPD-Link III Input 3 Camera

FAKRA4 FPD-Link III Input 4 Camera

FAKRA5 FPD-Link III Input 5 Camera

FAKRA6 FPD-Link III Input 6 Camera

HDMI High-Definition Multimedia Interface Output

Type-C USB-C interface

32P-H1 Power Positive DC 9-36V

32P-H2 Power Positive DC 9-36V

32P-H3 Power Positive DC 9-36V

Copyright ECOTRONS LLC
All Rights Reserved

Notes:

The output voltage of the FAKRA interface is hardware configurable. There are two voltage levels

to choose from: DC 5V and DC 12V. Please refer to the EAXVA01 Product Test Report for specific

output voltage or contact the equipment supplier.

Default terminal resistance of CAN interface is 120Ω.

4.3 System Main Chip

32P-H4 Power Positive DC 9-36V

32P-G1 Power GND

32P-G2 Power GND

32P-G3 Power GND

32P-G4 Power GND

32P-F2 KeyOn Switch 1

32P-E2 KeyOn Switch 2

32P-C4 CANA H Millimeter wave

radar 32P-D4 CANA L

32P-A4 CANB H Vehicle CAN

32P-B4 CANB L

32P-A3 CANA Shield Ground

32P-A2 CANB Shield Ground

32P-B3 RS232-1 Receiver Debug

32P-C3 RS232-1 Transmitter

32P-C2 RS232-2 Receiver IMU

32P-D2 RS232-2 Transmitter

32P-C3 Signal GND

32P-D3 Signal GND

32P-E3 Signal GND

32P-E4 Signal GND

32P-F3 Signal GND

32P-F4 Signal GND

Copyright ECOTRONS LLC
All Rights Reserved

The main chip of EAXVA01 is NVIDIA's Xavier which is designed for embedded intelligent systems

including autopilot systems. Xavier has six different processors: Valta Tensor Core GPU, eight-

core ARM64 CPU, dual NVDLA deep learning accelerator, image processor, vision processor and

video processor. These processors enable dozens of algorithms to be processed simultaneously

and in real-time for sensor processing, ranging, positioning and mapping, vision and perception,

and path planning. This level of performance is critical, allowing robots to take input from sensors,

locate themselves, sense their environment, identify and predict motion of nearby objects,

reasonably act and perform safely. With more than 9 billion transistors, Jetson Xavier can

perform 30 trillion operations per second, with the same processing power as a workstation with

a $10,000 GPU, but with a power of only 30 watts. Xavier is 20 times faster than the existing

Jetson TX2 platform. The computational performance of different internal processors and

internal structure are show below.

 Eight-core CPU: Eight-core "Carmel" CPU based on ARMv8 ISA

 Deep Learning Accelerator (DLA): 5 TOPS (FP16) | 10 TOPS (INT8)

 Volta GPU: 512 CUDA cores | 20 TOPS (INT8) | 1.3 TFLOPS (FP32)

 Vision Processor: 1.6 TOPS

 Stereo and Optical Flow Engine (SOFE): 6 TOPS

 Image Signal Processor (ISP): 1.5 Giga Pixels/s

 Video Encoder: 1.2 GPix/s

 Video Decoder: 1.8 GPix/s

Copyright ECOTRONS LLC
All Rights Reserved

4.3.1 Volta GPU

Because GPUs have a highly parallel structure, GPUs have higher efficiency than CPUs in

processing graphics data and complex algorithms. Most of the CPU area is occupied by controllers

and registers. In contrast, GPUs have more ALUs (Arithmetic Logic Units) for data processing than

data cache and flow control, which is targeted at parallel computation of computationally

intensive data.

4.3.2 Operation Test

Copyright ECOTRONS LLC
All Rights Reserved

We use the performance test routines in the system software installation package provided by

NVIDIA to draw Mandelbrot fractal graphs separately using ARMv8 CPU and Volta GPU to

compare the time it takes to draw a picture.

Test project: Compare the time required to draw a Mandelbrot fractal graph with an ARMv8 CPU

and a Volta GPU

Test process: By inputting instructions, the control application switches the operation between

the CPU and the GPU, records the time it takes to draw a Mandelbrot fractal graph.

Test result:

Round CPU (Unit: s) GPU (Unit: s) Acceleration Factor

1 0.71118802 0.00064200 1107.77

2 0.70679700 0.00065700 1075.79

3 0.71068001 0.00063600 1117.42

4 0.72342801 0.00049100 1473.38

5 0.70813304 0.00061800 1145.85

6 0.70578402 0.00055500 1271.68

7 0.71340507 0.00054700 1304.21

8 0.70767504 0.00049400 1432.54

9 0.70830107 0.00070400 1006.11

10 0.70901704 0.00060800 1166.15

Average 0.71044083 0.00059520 1193.62

Test conclusion:

Volta GPU Acceleration Unit accelerates approximately 1193 times compared to ARMv8 CPU.

4.4 Circuit Structure

The internal circuit structure is shown below:

Copyright ECOTRONS LLC
All Rights Reserved

Jetson AGX Xavier

Xavier
SOC

LPDDR4x
16GB

HDMI

eMMC
32GB

Thermal
Sensor

Power Subsystem

PMIC

CPU,GPU,CORE&CV
OpenV REGs

MEM VDD2 REG

Rail Discharge

Power/Voltage Monitors

SYS_VIN_HV

SYS_VIN_MV

VCC_RTC

CSI[7:0]

I2Cx

HDMI DP2 TX

HDMI_CEC

DP2 AUX CHx

DP2 HPD

Cameras FPD-Link III

Batt Backup

5V DC/DC

Buck Boost
DC/DC

CAN1 CAN1

CAN0 CAN0

RS232 UART1

RS232 UART7

UPHY1

DP0

RS232
PHY

CAN
PHY

USB
Type C

USB
Type C

PHY

RGMII
Gbit

Ethernet
ENET
PHY

CARRIER_POWER_ON

MODULE_POWER_ON

SYS_RESET_N

POWER_BTN_N

VDDIN_PWR_BAD_N

FORCE_RECOVERY_N

System
Control

M.2
KEY E

UPHY1

DP0

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 5 Software

The software system of EAXVA01 is customized for the autonomous driving system. The following

figure is a typical block diagram of the autonomous driving system. The software system of

EAXVA01 consists of RTOS, Runtime Framework and so on. The RTOS is a real-time optimized RT-

Linux operating system based on Ubuntu 18.04. The Runtime Framework has two software

frameworks to choose from: one is the Melodic version of ROS (Robot Operating System), and

the other is EcoCyber based on Apollo Cyber RT developed by Ecotrons.

5.1 Real-Time Operating System

Linux is a free-to-use and freely distributed Unix-like operating system. It is a multi-user, multi-

tasking, multi-threaded and multi-CPU based operating system based on POSIX and UNIX. It runs

major UNIX utilities, applications and network protocols. It supports both 32-bit and 64-bit

hardware. We are using the RT-Linux operating system based on the Ubuntu 18.04 version

optimized for real-time performance. Real-time operating system (RTOS) means that when

external events or data are generated, the system can be accept and process them at a fast

enough speed, and the processing result can control the production process or make a quick

response to the processing system within a specified time. The RTOS will schedule all available

resources to complete real-time tasks and coordinate all the real-time tasks. Its main feature is

to provide timely response and high reliability. For non-real-time operating systems, when

opening multiple applications, to ensure the user experience, the system must respond them all,

so all the applications will share the computing resources at the same time. As the result, every

Copyright ECOTRONS LLC
All Rights Reserved

application can be executed, but none of them is running

smoothly. For real-time operating systems, it is characterized by

the fact that if a task needs to be executed, it will be executed

immediately within a short delay, rather than pursuing multiple

tasks simultaneously. This feature has its own advantages in

autonomous driving: the priority of different commands can be set

in advance and high-priority tasks can be executed immediately.

For critical applications, no matter what state other applications are in, the system must ensure

adequate storage and CPU resources for it, so that critical applications can work well under all

circumstances. Please refer to Ubuntu for details.

5.2 ROS

ROS (Robot Operating System) is a robot software platform that

provides operating system-like functions for heterogeneous

computer clusters. The predecessor of ROS was the Switchyard

project established by the Stanford Artificial Intelligence

Laboratory to support the Stanford Intelligent Robot STAIR. By

2008, the development of the project was continued mainly by

Willow Garage. ROS provides some standard operating system

services such as hardware abstraction, underlying device control, common function

implementation, interprocess messages and packet management. ROS is based on a graph-like

architecture whereby processes at different nodes can accept, publish and aggregate various

information (such as sensing, control, state, planning, etc.). ROS can be divided into two layers,

the lower layer is the operating system layer described above, and the upper layer is the various

software packages that the different user groups contribute to realize different functions, such

as positioning drawing, action planning, sensing, simulation and so on. For details, please refer

to the http://www.ros.org/.

5.3 EcoCyber

https://www.ubuntu.com/index_kylin
http://www.ros.org/

Copyright ECOTRONS LLC
All Rights Reserved

EcoCyber is a high-performance runtime framework developed by Ecotrons LLC based on Apollo

Cyber RT, designed for autonomous driving scenarios. Based on a centralized computing model,

it is optimized for high concurrency, low latency and high throughput in autonomous driving to

meet the requirements of autonomous driving solutions. EcoCyber is built on the concept of

components. The result of component development is the base library and common components.

The principle is high reuse and low coupling, resulting in the refined components for different

functions. The specific functions depend on the extracted components, and the components

themselves may have dependencies, but generally not much. Each component is a building block

of the EcoCyber framework that includes a specific algorithm module that processes a set of input

numbers and produces a set of output numbers.

EcoCyber’s structure is shown above. The bottom layer is the basic library, and above it are

communication-related modules, including service discovery and the Publish-Subscribe System.

EcoCyber supports cross-process and cross-machine communication. The upper layer does not

need to care about the implementation details, because the communication layer will

automatically select the corresponding communication mechanism according to the deployment

of the algorithm module. Above the communication layer is the data cache/fusion layer. Data

needs to be fused between multiple sensors, and the algorithm needs to cache certain data. For

example, typical simulation applications require a data bridge between different algorithm

modules, and the data layer acts as a bridge for communication between the modules. Further

Copyright ECOTRONS LLC
All Rights Reserved

up is the computating model, which includes scheduling and tasks. Above the computing model

is the interface provided to the developer. EcoCyber provides a Component Class for developers,

which the developer only needs to inherit and implement the Proc interface. At the same time,

EcoCyber is also based on coroutines, providing developers with parallel computing-related

interfaces. There are also tools for development and debugging, recording and playback, and

other performance debugging tools. For instructions on how to create a new component using

Cyber RT, please refer to How to Create a New Component Using Cyber RT.

https://github.com/ApolloAuto/apollo/blob/master/docs/cyber/CyberRT_Quick_Start_cn.md

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 6 Interface

In a Linux system, all devices are divided into three categories: character devices, block devices,

and network interfaces.

A character device refers to a device that can read and write only one byte after another, or in

order. Character devices are stream-oriented devices, so it cannot read data in the device

memory randomly. Common character devices are mouse, keyboard, serial port, console, and

LED devices. The console (/dev/console) and the serial port (/dev/ttyS0) are examples of

character. Character devices are accessed through file system nodes, such as /dev/tty1 and

/dev/lp0. The only relevant difference between a character device and a regular file is that you

can often move around in a normal file, but most character devices are just data channels, and

you can only access them sequentially. However, there are character devices that look like data

areas, which you can move around. For example, frame grabber is often the case, where

applications can use mmap or lseek to access the entire requested image.

A block device is a device that can read a certain length of data from any location of the device.

Block devices include hard disks, USB flash drives and SD cards. Block devices are accessed

through file system nodes located in the /dev directory. A block device (such as a disk) should be

able to host a file system. Linux allows an application to read and write a block device like a

character device, which allows any number of bytes to be transferred at a time. As a result, the

difference between block and character devices is only in the kernel and in the way that data is

managed internally, and therefore differs in the software interface of the kernel/driver. Like a

character device, each block device is accessed through a file system node, and the difference

between them is transparent to the user. The block driver is completely different in terms of the

kernel driver from the character driver.

A network interface is a device that can exchange data with other hosts. Usually, an interface is

a hardware device, but it can also be a pure software device, such as a loopback interface. A

network interface is responsible for sending and receiving data messages. Under the driver of the

kernel network subsystem, it is not necessary to know how a single transaction is mapped to the

Copyright ECOTRONS LLC
All Rights Reserved

actual transmitted message. Many network connections (especially those using TCP) are stream-

oriented, but network devices are often designed to handle the sending and receiving of

messages. A network driver knows nothing about a single connection; it only processes messages.

Since it is not a stream-oriented device, a network interface is not as easy to map to a node of

the file system as /dev/tty1. The way Unix provides access to interfaces is still by assigning a name

to them, e.g. eth0, but the name does not have a corresponding entry in the file system. The

communication between the kernel and the network device driver is completely different from

that used for character and block device drivers. Instead of using read and write command, the

kernel calls the socket function associated with the message passing.

For EAXVA01, different interfaces correspond to different types of devices in a Linux system.

Among them, RS232 belong to the character type device, Ethernet interface and CAN belong to

the network interface. For these devices, you can use the programming language C to write

programs that call the driver access functions of these devices to access the interface. For details,

please refer to the "EcoSDK-XV Instruction Manual". We will explain in detail how to configure

interface parameters through the console to access the interface in this chapter.

6.1 RS232

RS232, an asynchronous transmission standard interface developed by the Electronic Industries

Association (EIA), is one of the communication interfaces on personal computers. To learn more

about the RS232 interface, you can refer to RS232-Wikipedia. The RS232 interface is mapped to

character device files in the Linux operating system, and RS232-1 and RS232-2 correspond to

/dev/ttyLF0 and dev/ttyLF1, respectively.

To view the parameters of RS232, use this command:

stty -F /dev/ttyLF1 -a

To set the baud rate of RS232-2 as 115200 and 8 data bits, use command below. If it can’t display

properly, you may type in sty --help to see other configuration setup.

stty -F /dev/ttyLF1 ispeed 115200 ospeed 115200 cs8

https://en.wikipedia.org/wiki/RS-232

Copyright ECOTRONS LLC
All Rights Reserved

To print the data from RS232, use this command:

cat /dev/ttyLF1

To send data by RS232, you can use this command:

echo “hello world” > dev/ttyLF1

6.2 CAN

CAN is the abbreviation of Controller Area Network (CAN). It was developed by German BOSCH

company, which is famous for developing and producing automotive electronics products, and

eventually became an international standard (ISO 11898). It is one of the most widely used

fieldbuses in the world. In North America and Western Europe, the CAN bus protocol has become

the standard bus for automotive computer control systems and embedded industrial control

LANs. To learn more about the CAN bus, you can refer to CANbus-Wikipedia. The basic software

in the EAXVA01 device maps the CAN interface of the device to the SocketCAN in the operating

system, which is managed as a network device by the system.

To view CAN device, you can use the command as below, whereas eth0 is ethernet interface,

can0 and can1 are CANA and CANB respectively.

ifconfig –a

https://en.wikipedia.org/wiki/CAN_bus

Copyright ECOTRONS LLC
All Rights Reserved

You can use the command below to configure the CAN baud rate as 500Kbps:

ip link set can0 type can bitrate 500000

To view parameters of CAN, you can use this command:

ip -details link show can0

To enable CANA, use this command:

ifconfig can0 up

To disenable CANA, type in command like this:

ifconfig can0 down

You can send a CAN frame with ID as 0x5A0 and data as 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,

0x88, use this command:

 # cansend can0 -i 0x5a0 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

To receive data from CAN, use the command below:

candump can0

6.3 Ethernet

Copyright ECOTRONS LLC
All Rights Reserved

Ethernet is the most widely used LAN communication method and a protocol. The Ethernet

protocol defines a set of software and hardware standards that connect different computer

devices together. The basic elements of Ethernet (Ethernet) device networking are switches,

routers, hubs, fiber and common network cables, and Ethernet protocols and communication

rules. The port for network data connection in Ethernet is the Ethernet interface. To learn more

about Ethernet, you can refer to the Ethernet-Wikipedia. The basic software in the EAS2A01

device maps the Ethernet interface of the device to eth0 in the operating system.

To view Ethernet interface, you can use the command below, whereas eth0 is Ethernet interface,

and can0 and can1 are CANA and CANB respectively.

ifconfig –a

You can set the IP address to be obtained automatically. Use the vi editor to open the network

port configuration file and edit the file as shown below, and then restart the network port device.

If you need help with how to use vi editor, please refer to A Beginner’s Guide to Vim.

vi /etc/network/interfaces

https://en.wikipedia.org/wiki/Ethernet
https://www.linux.com/learn/vim-101-beginners-guide-vim

Copyright ECOTRONS LLC
All Rights Reserved

/etc/init.d/networking restart

You can set the IP address fixed. Use Vi editor to open the Ethernet configuration and edit the

file as follows, then restart the Ethernet device.

vi /etc/network/interfaces

/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet dhcp

dhclient_opts -n

auto can0

iface can0 inet manual

 pre-up /sbin/ip link set $IFACE type can bitrate 500000

 up /sbin/ifconfig $IFACE up

 down /sbin/ifconfig $IFACE down

auto can1

iface can1 inet manual

 pre-up /sbin/ip link set $IFACE type can bitrate 500000

 up /sbin/ifconfig $IFACE up

 down /sbin/ifconfig $IFACE down

Copyright ECOTRONS LLC
All Rights Reserved

/etc/init.d/networking restart

6.4 FPDLink-III

The FPD-Link III serial bus solution supports full-duplex control of high-speed video data

transmission and bidirectional control communication over a single differential link. Integrating

video data and control with a single differential pair reduces interconnect size and weight while

eliminating bias issues and simplifying system design. Initially, the FPD-LINK application was used

for video display on laptops. TI developed the FPD-Link III serializer/deserializer in conjunction

with the automotive entertainment information system application environment, which was

adopted in infotainment system displays and ADAS camera applications. An STP or coaxial cable

carries video, audio, control data and power at the same time. To learn more about FPD-Link,

you can refer to FPD-Link-Wikipedia.

Different camera models need to be compatible with different driver packages and cannot be

accessed directly through the console.

/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

 address 10.0.0.100

 netmask 255.255.255.0

 gateway 10.0.0.1

auto can0

iface can0 inet manual

 pre-up /sbin/ip link set $IFACE type can bitrate 500000

 up /sbin/ifconfig $IFACE up

 down /sbin/ifconfig $IFACE down

auto can1

iface can1 inet manual

 pre-up /sbin/ip link set $IFACE type can bitrate 500000

 up /sbin/ifconfig $IFACE up

 down /sbin/ifconfig $IFACE down

https://en.wikipedia.org/wiki/FPD-Link

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 7 Demo Application

The figure below is a demonstration of autonomous driving hardware platform, which consists

of EAXVA01 and sensors.

 ACU

VPWR
32P-H2

32P-H3

32P-H4

GND

BATT

KEYON

32P-F2

32P-E2

32P-C4

32P-D4

32P-A3

CANA Vehicle

32P-A4

32P-B4

32P-A2

CANB Radar

32P-H1

32P-G1

32P-G2

32P-G3

32P-G4

FAKRA1
Camera*1

FAKRAn
Camera*n

32P-B3

32P-C3RS232-1 PC

32P-C2

32P-D2RS232-2 IMU

Lidar
RJ45

Ethernet

FPDLink III

FPDLink III

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 8 Development Tool

Devices consisting of hardware, operating system stacks, and runtime environments are not

capable of autopilot, and we need to continue to develop software packages that implement

specific functionality and deploy them to the devices. Therefore, we offer three development

tools that users can use to develop applications for specific scenarios.

8.1 Local Development Tool Kit

EAXVA01 has a set of local development tools installed, including gcc, make, CMake, catkin, Bazel

and gdb debugger. Application developers can develop user space applications directly on the

EAXVA01 platform.

8.2 EcoSDK-XV

EcoSDK-XV provides users with a complete application development environment, including:

 Cross-development toolchain: consists of a cross-compiler, cross-connector, cross-

debugger, and a set of other tools for application development.

 System root: EcoSDK-XV contains 2 system roots: one for the development host, which

contains the cross-development toolchain and other tools; the other for the target, which

is the full root file system for the target, contains development kits consisting of header

files and libraries.

 Environment settings: The script provided by the EcoSDK-XV package allows you to

configure an environment for cross-development on the development host.

 Analysis tools: A variety of user space tools for analyzing your application on your target

system.

The components in EcoSDK-XV give application developers all the tools necessary to write

applications based on the Linux operating system, ROS, and EcoCyber. For details, please refer to

EcoSDK-XV Instruction Manual.

8.3 EcoCoder-AI

Copyright ECOTRONS LLC
All Rights Reserved

EcoCoder-AI is a powerful automatic code generation library based on Matlab / Simulink that

links directly to the target controller. EcoCoder-AI integrates code generation, compilation and

one-click generation of executable files. It is possible to directly convert the control model based

on Simulink into an EcoCyber-based or ROS-based executable program for the target controller

and download it to the target controller. For details, please refer to EcoCoder-AI Instruction

Manual.

