
Copyright ECOTRONS LLC
All Rights Reserved

EcoSDK-XV

User Manual

Copyright ECOTRONS LLC
All Rights Reserved

Revision History

Time Version Detail Reviser

May 1, 2019 V1.0 First version David Wang

Sep 20, 2019 V1.1 First page updated David Wang

Feb. 11, 2020 V1.2 Logo, address updated David Wang

Feb. 20, 2020 V1.3 Content update David Wang

May 11, 2020 V1.4 Contact info update Zack Li

Contact us:

Web: http://www.ecotrons.com

Email: info@ecotrons.com

ev-support@ecotrons.com

Address: 13115 Barton Rd, Ste H

 Whittier, CA 90605 USA

Telephone: +1 562-758-3039

+1 562-713-1105

http://www.ecotrons.com/
mailto:info@ecotrons.com
mailto:ev-support@ecotrons.com

Copyright ECOTRONS LLC
All Rights Reserved

Content

Chapter 1 Summary .. 5

Chapter 2 Basic Knowledge .. 6

Chapter 3 Software Installation .. 7

3.1 Computer Configuration ... 7

3.2 Install EcoSDK-XV .. 7

3.2.1 Installation .. 7

3.2.2 Verification .. 8

Chapter 4 Using EcoSDK-XV .. 10

4.1 Package structure ... 10

4.2 Compile an Application ... 11

4.2.1 Use EcoSDK-XV for Direct Compilation Project .. 11

4.2.2 Use EcoSDK-XV for Autotools-based Project .. 13

4.2.3 Use EcoSDK-XV for Makefile-based Project .. 16

4.2.4 Use EcoSDK-XV for ROS-based Project ... 19

4.3 Debug the Application .. 22

4.3.1 Initialize Cross-Development Environment .. 22

4.3.2 Recompile ... 22

4.3.3 Execute the Program... 22

4.3.4 Link Object Programs .. 22

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 5 Interface ... 24

5.1 RS232 .. 25

5.2 CAN.. 25

5.3 Ethernet .. 26

5.4 HDMI ... 27

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 1 Summary

EcoSDK-XV is a PC-side cross-development tool developed by Ecotrons LLC for its computing

platform EAXVA01. For detailed information about EAXVA01, please refer to EAXVA01

Datasheet. EcoSDK-XV provides users with a complete application development environment,

including:

 Cross-development toolchain: consists of a cross-compiler, cross-connector, cross-

debugger, and a set of other tools for application development.

 System root: EcoSDK-XV contains 2 system roots: one for the development host, which

contains the cross-development toolchain and other tools; the other for the target,

which is the full root file system for the target, contains the development kit with

header file and libraries in it.

 Environment settings: The script provided by EcoSDK-XV package allows you to

configure an environment for cross-development on the development host.

 Analysis tools: A variety of user space tools for analyzing your application on your target

system.

The software package in EcoSDK-XV provides application developers with all the necessary

tools for developing applications based on Linux and ROS (Robot Operating System). These

applications can be based on GNU Make, GNU Autotool, or CMake. After initializing the

cross-development environment, the user can cross-compile the target application on the

development host.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 2 Basic Knowledge

EcoSDK-XV is a cross-development tool for developing Linux system user space applications and

ROS system applications. Here are some materials you may find helpful.

If you are a Linux beginner, maybe it's helpful to learn some quick tutorials about Linux

command line tools. Here is the link: http://www.ee.surrey.ac.uk/Teaching/Unix/. If you want

to learn C or C++ programming, you can check out the C language tutorial, or the C++ tutorial. If

you want to program based on Linux, try this. If you want to use the Makefile to manage your

software code, this tutorial might be able to help you. If you want to use CMake to manage

your software code, you can go to CMake Homepage. If you want to write an application based

on ROS (Robot Operating System), you can start from the wiki of ROS. If you want to learn

about the GDB debugger, check out the GDB website.

http://www.ee.surrey.ac.uk/Teaching/Unix/
https://www.w3schools.in/c-tutorial/
https://www.w3schools.in/cplusplus-tutorial/
https://www.tutorialspoint.com/unix/
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://cmake.org/
http://wiki.ros.org/
https://www.gnu.org/software/gdb/

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 3 Software Installation

3.1 Computer Configuration

Requirement Minimum Configuration

Operating System Ubuntu-18.04-amd64
CPU Intel(R) Core(TM)2 Duo CPU E4600 @2.40GHz
RAM 2G

Hard Disk 10G available space

Requirement Recommended Configuration

Operating System Ubuntu-18.04-amd64
System Language English

CPU Intel(R) Core(TM) i3-2120 CPU@3.30GHz
RAM 8G

Hard Disk 10G available space

3.2 Install EcoSDK-XV

3.2.1 Installation

Open the command terminal and go to the directory where EcoSDK-XV is located and check

whether the file is executable. If it’s not executable, use the chmod command to change the

file's attributes. Run the setup file and the installation will start. During the installation, the user

will be prompted to enter the installation directory. If you choose the default installation

directory, just press enter. Installation steps are shown in the figure below.

$ ls -l

$ chmod u+x EcoSDK-XV-18.12.20.sh

$ ls -l

$ sudo ./EcoSDK-XV-18.12.20.sh

Copyright ECOTRONS LLC
All Rights Reserved

3.2.2 Verification

In the command terminal, enter the command "source <install path>/environment-setup-

aarch64-fsl-linux" to configure the cross-development environment, where <install path> is the

installation directory selected during installation. If you select the default installation path,

<install Path> is "/opt/fsl-auto/2.4.1". Then type in the commands "echo $CC" and "aarch64-fsl-

linux-gcc --version" respectively. If you see the messages as shown below, EcoSDK-XV is

installed successfully.

$ source <install path>/environment-setup-aarch64-fsl-linux

$ echo $CC

$ aarch64-fsl-linux-gcc --version

Copyright ECOTRONS LLC
All Rights Reserved

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 4 Using EcoSDK-XV

4.1 Package structure

You can use command ‘tree’ to see the structure of EcoSDK-XV.

There are several types of files and subdirectories:

Copyright ECOTRONS LLC
All Rights Reserved

 Environment settings: The environment-setup-aarch64-fsl-linux script is used to initialize

the environment variables needed to cross-compile the target program on the host.

 Site configuration: When you are using GNU Autotools development package, the site

configuration file site-config-* contains configuration settings.

 System root: The sysroot subdirectory contains a system root subdirectory for the target

machine and a system root subdirectory for the host. The subdirectory x86_64-fslbsp-

linux is the system root for the host and contains the cross toolchain. The subdirectory

aarch64-fsl-linux is the root file system for the target EAXVA01, and contains executable

programs, software libraries, configuration files, etc. that can run on the target

EAXVA01.

 Version file: The version-* file contains version information about the toolchain version.

Notes: By default, the created toolchain only builds dynamically linked binaries. If you want to

build a statically linked binary, you need to make sure that you can the package containing the

static library in your system root.

4.2 Compile an Application

Before using EcoSDK-XV to develop applications, initialize the development environment with

the corresponding script. Execute the environment configuration script environment-setup-

aarch64-fsl-linux in the installation directory. If you open the script, you will see a set of

environment variables related to cross-compilation. The following sections explain how to use

EcoSDK-XV for cross-compilation for direct compilation projects, Autotools-based projects,

Makefile-based projects and ROS-based projects.

$ source /<install path>/environment-setup-aarch64-fsl-linux

4.2.1 Use EcoSDK-XV for Direct Compilation Project

We’ll take a simple program with only one C file as an example to show how to use the cross

compiler in EcoSDK-XV to create an executable program that can run on EAXVA01.

4.2.1.1 Create Your Working Directory and Write a Program

Copyright ECOTRONS LLC
All Rights Reserved

Create an empty directory and set it as your working directory.

$ mkdir $HOME/helloworld

$ cd $HOME/helloworld

Create a file named hello-world.c, and fill the content as below:

hello-world.c:

4.2.1.2 Initialize Cross-Development Environment

When you install EcoSDK-XV, it will create cross-toolchain environment setup script in the

installation directory automatically. Before you develop applications using these tools, you

should run the script first. The script’s name starts like “environment-setup”.

$ source /<install path>/environment-setup-aarch64-fsl-linux

4.2.1.3 Cross-Compile the Application

You can use this command to cross-compile the project you work on.

$ $CC hello-world.c -o hello-world

Then you can verify the project with an easy command shown below. It will print out the file

structure of the executable binaries.

$ file hello-world

4.2.1.4 Execute the programs

You can use command scp to copy your executable hello-world into your target system through

network. Please replace the <target_ip> with your target EAXVA01’s IP address.

$ scp hello-world root@<target_ip>:/home/root

#include <stdio.h>

int main()

{

printf("Hello, World! \n");

return 0;

}

Copyright ECOTRONS LLC
All Rights Reserved

Set this file as an executable file through serial port terminal and execute the program.

chmod u+x hello-world

./hello-world

hello,world!

Now it’s done!

4.2.2 Use EcoSDK-XV for Autotools-based Project

After you install EcoSDK-XV, you can easily use the workflow cross development application

based on GNU. Here is a simple Autotools workflow.

Copyright ECOTRONS LLC
All Rights Reserved

You can follow the instructions below to create a simple Hello World program with Autotools.

For detailed information of GNU Autotools workflow, please refer to the same demo on

GNOME Developer.

4.2.2.1 Create Your Working Directory and Write a Program

Create an empty directory and set it as your working directory.

$ mkdir $HOME/helloworld

$ cd $HOME/helloworld

Create and edit the required files. A source file, a configuration file, a Makefile.am file and a

README file are needed: hello.c, configure.ac, Makefile.am, and README.

Create an empty README file with the following command, which is required by the GNU

coding standard:

$ touch README

The other three files should look like this:

hello.c:

configure.ac:

Makefile.am:

#include <stdio.h>

int main()

{

printf("Hello, World! \n");

return 0;

}

AC_INIT(hello,0.1)

AM_INIT_AUTOMAKE([foreign])

AC_PROG_CC

AC_CONFIG_FILES(Makefile)

AC_OUTPUT

https://developer.gnome.org/anjuta-build-tutorial/stable/create-autotools.html.en

Copyright ECOTRONS LLC
All Rights Reserved

4.2.2.2 Initialize Cross-Development Environment

When you install EcoSDK-XV, it will create cross-toolchain environment setup script in the

installation directory automatically. Before you develop applications using these tools, you

should run the script first. The script’s name starts like “environment-setup”.

$ source /<install path>/environment-setup-aarch64-fsl-linux

4.2.2.3 Create Configure Script

Use autoreconf command to create a configure script.

$ autoreconf

4.2.2.4 Cross-Compile

Use the command below to cross-compile the project, and it will automatically use the cross-

compiler. The environment variable CONFIGURE_FLAGS will provide GNU configure with

smallest parameters.

$./configure $ {CONFIGURE_FLAGS}

4.2.2.5 Build and Install

Use these two commands to generate the project and install them into the target directory.

$ make

$ make install DESTDIR=./tmp

You can verify the project with an easy command shown below. It will print out the file

structure of the executable binaries.

$ file ./tmp/usr/local/bin/hello

4.2.2.6 Execute

bin_PROGRAMS = hello

hello_SOURCES = hello.c

Copyright ECOTRONS LLC
All Rights Reserved

You can run the project in EAXVA01. You can use command scp to copy your executable hello

program into your target system through network. Please replace the <target_ip> with your

target EAXVA01’s IP address.

$ scp ./tmp/usr/local/bin/hello root@<target_ip>:/home/root

Set this file as an executable file through serial port terminal and execute the program.

chmod u+x hello

./hello

hello,world!

Now it’s finished!

4.2.3 Use EcoSDK-XV for Makefile-based Project

Running the EcoSDK-XV cross-development environment configuration script will set up a series

of environment variables related to cross-compilation. Makefile-based projects use and interact

with these environment variables. These environment variables are subject to general rules. In

this section we will introduce a simple Makefile-based development process and provide an

example of how to use cross-compiled environment variables and Makefile variables during

development. The figure below shows the workflow of a simple Makefile-based project.

Copyright ECOTRONS LLC
All Rights Reserved

4.2.3.1 Create Your Working Directory and Write a program

Create an empty directory and set it as your working directory.

$ mkdir $HOME/helloworld

$ cd $HOME/helloworld

Create and Edit the required files. We need to create three files: we will call functions from

main.c, declare functions in module.h, and define functions in module.c.

main.c:

Copyright ECOTRONS LLC
All Rights Reserved

module.h:

module.c:

4.2.3.2 Initialize Cross-Development Environment

When you install EcoSDK-XV, it will create cross-toolchain environment setup script in the

installation directory automatically. Before you develop applications using these tools, you

should run the script first. The script’s name starts like “environment-setup”.

$ source /<install path>/environment-setup-aarch64-fsl-linux

4.2.3.3 Create Makefile

Makefile

#include <module.h>

int main()

{

sample_func();

return 0;

}

#ifdef MODULE_H

void sample_func()

#endif

#include <stdio.h>

void sample_func()

{

printf("Hello, World! \n");

}

all: main.o module.o

${CC} main.o module.o -o target_bin

main.o: main.c module.h

${CC} -I . -c main.c

module.o: module.c module.h

${CC} -I . -c module.c

clean:

rm -rf *.o

rm target_bin

Copyright ECOTRONS LLC
All Rights Reserved

4.2.3.4 Build the project

Use command make to generate binary output file, the value of CC is set when you run SDK

environment configuration.

$ make

You will see the cross-compiler it’s using is the one you define CC as when you run installation

script. You can verify the project with an easy command shown below. It will print out the file

structure of the executable binaries.

$ file ./target_bin

4.2.3.5 Execute

You can run the project in EAXVA01. Use command scp to copy your executable hello program

into your target system through network. Please replace the <target_ip> with your target

EAXVA01’s IP address.

$ scp ./target_bin root@<target_ip>:/home/root

Set this file as an executable file through serial port terminal and execute the program.

chmod u+x target_bin

./target_bin

hello,world!

Now it’s done!

4.2.4 Use EcoSDK-XV for ROS-based Project

ROS-based projects use the catkin instructions to build executable programs, and catkin will call

CMake. Running EcoSDK-XV cross-development environment configuration script will set up a

series of environment variables related to cross-compilation. After that, running the catkin

command will call the cross-compiler to compile the project. In this section, we will introduce a

cross-compilation process for a simple ROS-based project.

4.2.4.1 Create Your Working Directory and Write a Program

Copyright ECOTRONS LLC
All Rights Reserved

Create a temporary directory to store ROS demo program fetched from the net.

$ mkdir $HOME/tmp

$ cd $HOME/tmp

$ git clone https://github.com/ros/catkin_tutorials.git

Create a directory as your working directory, and copy a software package from demo program

into your working directory.

$ mkdir -p $HOME/catkin_ws/src

$ cd $HOME/catkin_ws

$ cp -a $HOME/tmp/catkin_tutorials/create_package_pubsub/catkin_ws/src/beginner_tutorials

src/

You can use command tree to view the files in directory /beginner_tutorials.

4.2.4.2 Initialize ROS

Run the environment configuration script in ROS installation directory, and it will initialize the

ROS working environment.

Copyright ECOTRONS LLC
All Rights Reserved

$ source /opt/ros/indigo/setup.sh

4.2.4.3 Initialize Cross-Development Environment

When you install EcoSDK-XV, it will create cross-toolchain environment setup script in the

installation directory automatically. Before you develop applications using these tools, you

should run the script first. The script’s name starts like “environment-setup”.

$ source /<install path>/environment-setup-aarch64-fsl-linux

4.2.4.4 Build the Project

Use command catkin_make to generate binary output file.

$ catkin_make

You will see the compiler it’s using is cross-compiler. You can verify the project with the

commands shown below. It will print out the file structure of the executable binaries.

$ file devel/lib/beginner_tutorials/talker

$ file devel/lib/beginner_tutorials/listener

4.2.4.5 Execute

You can run the project in EAXVA01. Use command scp to copy your executable talker and

listener files of your program into your target system through network. Please replace the

<target_ip> with your target EAXVA01’s IP address.

$ scp devel/lib/beginner_tutorials/talker root@<target_ip>:/home/root

Set this file as an executable file through serial port terminal and execute the program.

chmod u+x talker

chmod u+x listener

source /opt/ros/indigo/setup.sh &

roscore &

./listener &

Copyright ECOTRONS LLC
All Rights Reserved

./talker &

Now it’s done!

4.3 Debug the Application

The gdbserver is pre-installed inside the EAXVA01 device, and the application developer can

debug the application running on the target machine on the development host through the

network. We will introduce the debug process of the hello-world program compiled directly in

the above.

4.3.1 Initialize Cross-Development Environment

When you install EcoSDK-XV, it will create cross-toolchain environment setup script in the

installation directory automatically. Before you develop applications using these tools, you

should run the script first. The script’s name starts like “environment-setup”.

$ source /<install path>/environment-setup-aarch64-fsl-linux

4.3.2 Recompile

If you want to use gbd debugger to debug the application, you need to compile the information

you need to debug into the executable file.

$ $CC -g hello-world.c -o hello-world

4.3.3 Execute the Program

Use command scp to copy your executable hello-world program into your target system

through network. Please replace the <target_ip> with your target EAXVA01’s IP address.

$ scp hello-world root@<target_ip>:/home/root

Use gdbserver to run the application in EAXVA01 through serial port terminal. <host_ip> is the

development host’s IP, and <gdb_port> is a private port.

gdbserver <host_ip>:<gdb_port> ./hello-world

4.3.4 Link Object Programs

Copyright ECOTRONS LLC
All Rights Reserved

Use the cross debugger to load the executable program on the development host and establish

a link to the target. Replace <target_ip> with the IP address of the development host, replace

<gdb_port> with the one just entered in the target machine. After that, you can debug the

program with gdb just like it’s a local program. For more information on the gdb debugger, you

can refer to the GDB official website.

$ $GDB hello-world

(gdb) target remote <target_ip>:<gdb_port>

(gdb)

EcoSDK-XV is a cross-development toolkit for developing applications generated by the Yocto

Project. For more details, refer to Yocto Project Application Development and the Extensible

Software Development Kit (eSDK).

http://www.gnu.org/software/gdb/
https://www.yoctoproject.org/docs/2.6.1/sdk-manual/sdk-manual.html
https://www.yoctoproject.org/docs/2.6.1/sdk-manual/sdk-manual.html

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 5 Interface

In a Linux system, all devices are divided into three categories: character devices, block devices,

and network interfaces.

A character device refers to a device that can read and write only one byte after another, or in

order. Character devices are stream-oriented devices, so it cannot read data in the device

memory randomly. Common character devices are mouse, keyboard, serial port, console, and

LED devices. The console (/dev/console) and the serial port (/dev/ttyS0) are examples of

character. Character devices are accessed through file system nodes, such as /dev/tty1 and

/dev/lp0. The only relevant difference between a character device and a regular file is that you

can often move around in a normal file, but most character devices are just data channels, and

you can only access them sequentially. However, there are character devices that look like data

areas, which you can move around. For example, frame grabber is often the case, where

applications can use mmap or lseek to access the entire requested image.

A block device is a device that can read a certain length of data from any location of the device.

Block devices include hard disks, USB flash drives and SD cards. Block devices are accessed

through file system nodes located in the /dev directory. A block device (such as a disk) should

be able to host a file system. Linux allows an application to read and write a block device like a

character device, which allows any number of bytes to be transferred at a time. As a result, the

difference between block and character devices is only in the kernel and in the way that data is

managed internally, and therefore differs in the software interface of the kernel/driver. Like a

character device, each block device is accessed through a file system node, and the difference

between them is transparent to the user. The block driver is completely different in terms of

the kernel driver from the character driver.

A network interface is a device that can exchange data with other hosts. Usually, an interface is

a hardware device, but it can also be a pure software device, such as a loopback interface. A

network interface is responsible for sending and receiving data messages. Under the driver of

the kernel network subsystem, it is not necessary to know how a single transaction is mapped

to the actual transmitted message. Many network connections (especially those using TCP) are

Copyright ECOTRONS LLC
All Rights Reserved

stream-oriented, but network devices are often designed to handle the sending and receiving

of messages. A network driver knows nothing about a single connection; it only processes

messages. Since it is not a stream-oriented device, a network interface is not as easy to map to

a node of the file system as /dev/tty1. The way Unix provides access to interfaces is still by

assigning a name to them, e.g. eth0, but the name does not have a corresponding entry in the

file system. The communication between the kernel and the network device driver is

completely different from that used for character and block device drivers. Instead of using

read and write command, the kernel calls the socket function associated with the message

passing.

For EAXVA01, different interfaces correspond to different types of devices in a Linux system.

Among them, RS232 belongs to the character type device, Ethernet interface and CAN belong

to the network interface. For these devices, you can configure the parameters through console

and access the interface. For details, please refer to EAXVA01 Datasheet. We will explain in

detail how to call the device driver functions in C programming language to access the interface

in this chapter.

5.1 RS232

RS232, an asynchronous transmission standard interface developed by the Electronic Industries

Association (EIA), is one of the communication interfaces on personal computers. To learn more

about the RS232 interface, you can refer to RS232-Wikipedia. The RS232 interface is mapped to

character device files in the Linux operating system, and RS232-1 and RS232-2 correspond to

/dev/ttyLF0 and dev/ttyLF1, respectively.

If you want to receive and transmit data through serial port, try this:

https://digilander.libero.it/robang/rubrica/serial.htm#CONTENTS

5.2 CAN

CAN is the abbreviation of Controller Area Network (CAN). It was developed by German BOSCH

company, which is famous for developing and producing automotive electronics products, and

eventually became an international standard (ISO 11898). It is one of the most widely used

https://en.wikipedia.org/wiki/RS-232
https://digilander.libero.it/robang/rubrica/serial.htm#CONTENTS

Copyright ECOTRONS LLC
All Rights Reserved

fieldbuses in the world. In North America and Western Europe, the CAN bus protocol has

become the standard bus for automotive computer control systems and embedded industrial

control LANs. To learn more about the CAN bus, you can refer to CANbus-Wikipedia or

https://elinux.org/CAN_Bus. The basic software in the EAXVA01 device maps the CAN interface

of the device to the SocketCAN in the operating system, which is managed as a network device

by the system. If you want to know more about SocketCAN, please read: SocketCAN -

Wikipedia.

To view CAN device, you can use the command as below, whereas eth0 is ethernet interface,

can0 and can1 are CANA and CANB respectively.

ifconfig –a

If you want to use C programming language to realize CAN data receive and transmit, you can

refer to SocketCAN Documentation (Linux Kernel). If you want to know more about SocketCAN-

based applications in Linux, refer to https://github.com/linux-can.

5.3 Ethernet

Ethernet is the most widely used LAN communication method and a protocol. The Ethernet

protocol defines a set of software and hardware standards that connect different computer

https://en.wikipedia.org/wiki/CAN_bus
https://elinux.org/CAN_Bus
https://en.wikipedia.org/wiki/SocketCAN
https://en.wikipedia.org/wiki/SocketCAN
https://www.kernel.org/doc/Documentation/networking/can.txt
https://github.com/linux-can

Copyright ECOTRONS LLC
All Rights Reserved

devices together. The basic elements of Ethernet (Ethernet) device networking are switches,

routers, hubs, fiber and common network cables, and Ethernet protocols and communication

rules. The port for network data connection in Ethernet is the Ethernet interface. To learn more

about Ethernet, you can refer to the Ethernet-Wikipedia. The basic software in the EAXVA01

device maps the Ethernet interface of the device to Network socket, which is eth0, in the

operating system. If you want to know more about Network socket, refer to Network socket

- Wikipedia. If you want to use C programming language to realize data transmission based on

Socket, please refer to https://www.tutorialspoint.com/unix_sockets/index.htm or

https://beej.us/guide/bgnet/.

5.4 HDMI

High Definition Multimedia Interface is an all-digital video and audio transmission interface that

provides uncompressed audio and video signals. HDMI can be used in set-top boxes, DVD

players, personal computers, video game consoles, integrated amplifiers, digital audio and

televisions. HDMI can transmit audio and video signals. Since the audio and video signals use

the same cable, the installation of the system wiring is greatly simplified. To learn more about

HDMI, see HDMI-Wikipedia. In the EAXVA01 device, the HDMI interface is mapped to the frame

buffer device in the Linux operating system, and the video display device is driven in a memory

buffer containing the complete frame data, and the corresponding device file is /dev/fb0. If the

system has multiple graphics cards, multiple frame buffer devices can be supported under

Linux, up to 32. For detailed information, refer to https://en.wikipedia.org/wiki/Framebuffer.

If you want to use C programming language to control display device based on framebuffer,

refer to https://cmcenroe.me/2018/01/30/fbclock.html or

https://gist.github.com/FredEckert/3425429.

https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Network_socket
https://www.tutorialspoint.com/unix_sockets/index.htm
https://beej.us/guide/bgnet/
https://en.wikipedia.org/wiki/HDMI
https://en.wikipedia.org/wiki/Framebuffer
https://cmcenroe.me/2018/01/30/fbclock.html
https://gist.github.com/FredEckert/3425429

